Heedless Backbones

DAT++ Family

Select an option
Results
Parameters (M)
Images / Second
Publication Date
Select an option
---------
Object Detection
Instance Segmentation
Classification
Semantic Segmentation
Panoptic Segmentation
Select an option
---------
ImageNet-1k
ImageNet-A
ImageNet-R
ImageNet-Sketch
ImageNet-C
ImageNet-C-bar
ImageNet-V2
ImageNet-ReaL
PASCAL VOC 2007 (val)
PASCAL VOC 2007 (test)
Select an option
----------
Top-1
Top-5
GFLOPs
Select an option
----------
224x224
384x384
512x512
Select an option
Results
Parameters (M)
Images / Second
GFLOPs
Publication Date
Select an option
---------
MegData73M
JFT-3B
JFT-300M
ImageNet-1k
ImageNet-22k
Select an option
----------
Supervised
Sup. + TL
FCMAE
MAE
CL
Select an option
Family
Pretrain Dataset
Classification Resolution
Select an option
----------
Family
Pretrain Method
Classification Resolution
modelparams (m)pretrainfinetuneGFLOPsTop-1
DAT-T++24.0IN-1k : Sup. : 300— : — : —4.383.9
DAT-S++53.0IN-1k : Sup. : 300— : — : —9.484.6
DAT-B++93.0IN-1k : Sup. : 300— : — : —16.684.9
DAT-B++93.0IN-1k : Sup. : 300IN-1k : 30 : 38449.785.9
modelparams (m)pretrainfinetunegflopsIN-1k
DAT-T++24.0IN-1k : Sup. : 300— : — : —4.383.9/—
DAT-S++53.0IN-1k : Sup. : 300— : — : —9.484.6/—
DAT-B++93.0IN-1k : Sup. : 300— : — : —16.684.9/—
DAT-B++93.0IN-1k : Sup. : 300IN-1k : 30 : 38449.785.9/—

COCO (val)

modelpretrainheadtraingflopsmAPbAPb50APb75mAPbsmAPbmmAPbl
DAT-T++IN-1k : Sup. : 300RetinaNetCOCO (train) : 12283.046.868.450.330.851.962.5
DAT-T++IN-1k : Sup. : 300RetinaNetCOCO (train) : 36283.049.270.353.032.753.464.7
DAT-T++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 12301.048.770.953.732.852.463.5
DAT-T++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 36301.050.571.955.735.054.365.3
DAT-T++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 12771.052.270.956.633.956.268.1
DAT-T++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 36771.053.071.657.737.156.668.6
DAT-S++IN-1k : Sup. : 300RetinaNetCOCO (train) : 12410.048.370.051.832.352.463.1
DAT-S++IN-1k : Sup. : 300RetinaNetCOCO (train) : 36410.050.271.554.034.754.665.3
DAT-S++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 12430.049.871.954.633.853.964.4
DAT-S++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 36430.051.272.656.335.855.465.6
DAT-S++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 36895.054.272.758.938.058.369.7
DAT-B++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 361059.054.573.059.438.558.469.8

COCO (val)

modelpretrainheadtraingflopsmAPmAPm50APm75mAPmsmAPmmmAPml
DAT-T++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 12301.043.767.947.324.547.462.4
DAT-T++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 36301.045.169.248.726.748.564.0
DAT-T++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 12771.045.068.148.925.148.563.4
DAT-T++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 36771.046.069.350.126.749.364.3
DAT-S++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 12430.044.568.748.225.048.063.3
DAT-S++IN-1k : Sup. : 300Mask R-CNNCOCO (train) : 36430.045.769.949.727.649.264.3
DAT-S++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 36895.046.970.151.328.350.365.8
DAT-B++IN-1k : Sup. : 300Cascade Mask R-CNNCOCO (train) : 361059.047.070.551.427.950.365.8

ADE20K (val)

modelpretrainheadtraingflopsmIoUmspAccmsmAccmsmIoUsspAccssmAccss
DAT-T++IN-1k : Sup. : 300UPerNetADE20K (train) : 128 : 512969.050.349.4
DAT-T++IN-1k : Sup. : 300Panoptic FPNADE20K (train) : 64 : 512212.048.848.4
DAT-S++IN-1k : Sup. : 300UPerNetADE20K (train) : 128 : 5121098.051.250.5
DAT-S++IN-1k : Sup. : 300Panoptic FPNADE20K (train) : 64 : 512339.050.749.9
DAT-B++IN-1k : Sup. : 300UPerNetADE20K (train) : 128 : 5121268.051.551.0
DAT-B++IN-1k : Sup. : 300Panoptic FPNADE20K (train) : 64 : 512508.051.150.4